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SUMMARY 

The method of matched asymptotic expansions is appfied to the non-linear radiative cooling of finite or 
semi-infinite cylinders. It is shown that the method applies when radiation is the limiting factor in the 
heat-transfer process, i.e. when the heat resistance of the bulk is relatively low. The analysis will be of 
importance in the fields of crystal growth and the cooling of fins. 

1. Introduction 

In recent years there has been a growing interest in the radiative cooling of  finite or semi-infi- 

nite cylinders, especially in the field o f  crystal growth. A common way to grow large mono- 

crystals is to  pull the crystal slowly from a melt. The two techniques most widely used are the 

Czochralski method and the floating-zone method. The second method is mainly used for the 

growth of  silicon crystals. A description o f  both  can be found in a monograph by Brice [ 1 ]. 

The temperatures at which these processes take place are usually rather high. Silicon, for 

example, a material which is o f  foremost importance in semiconductor technology, solidifies at 

1693 K. This is why the crystal will lose most o f  its heat by  radiation. Heat-transfer problems in 

this field are therefore invariably non-linear. Another source o f  non-linearity is the thermal 

conductivity k. In the case o f  silicon k is inversely proportional to the absolute temperature 

over a wide range o f  temperatures. The remaining material properties are usually independent 

of  the temperature. 

For a semi-infinite silicon crystal with a curved solid-liquid interface the problem can there- 

fore be def'med as follows. The flow o f  heat is governed by  the differential equation 

r "~r- -rkm T ~-T + - ~  km ~ ~ - vpcp - ~  = O, (I.I) 

where the temperature field is assumed to be stationary. Here the subscript m refers to condi- 

tions at the melting point, T is the temperature, F denotes the distance from the axis of  

symmetry,  ~- is the axial coordinate, p is the density, cp is the specific heat and v is the axial 
velocity of  the crystal. The ranges o f ~  and ~ are restricted by ~0ff) ~<~ < oo and 0 ~<7~<R, 
where 20(7) denotes the solid-liquid interface, which we shall consider as given in the present 

problem definition. The boundary conditions are 
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T =Tm at x = Xo (T), (1.2) 

T ~  To if ~ ,  (1.3) 

a ~  
a--7 = 0 at ~ = 0, (1.4) 

km~m a~ 
- oor(T 4 -  T04) at T=R, (1.5) 

where o is the Stefan-Boltzmann constant, or is the emissivity and T0 the temperature of the 
surroundings. 

The boundary condition (1.5) seems to be most appropriate when the floating-zone tech- 
nique is applied. In that case the surface of the crystal is only facing the cooled inner wall of 

the tank that encloses the experimental area. When the Czochralski method is being used, ".here 
will be an influx of heat from the walls of  the crucible and the surface of the melt. Corrections 

can be made in the manner described by Arizumi ~md Kobayashi [2]. It can be shown that heat 
losses due to convection are negligible in comparison with radiation losses at temperatures close 
to the melting point. On the other hand, if T approaches T0, a correction for convection has to 
be made. However, it would seem that most of  the heat-transfer process will take place in the 
high-temperature range. Since we are interested in this range only [3], a correction for convec- 
tion would be an unnecessary complication. For silicon it can be shown that radiation heat 
transfer inside the crystal is small in comparison with conduction heat transfer. We have 
therefore neglected this effect. 

Methods for solving this problem can be classified in two groups. Those belonging to the 
first group aim at f'mding analytical solutions, mostly by means of series expansions [4, 5]. To 
this end an attempt is made to linearize the radiation condition (1.5) with respect to the 
temperature To. It is argued that under certain conditions one can take for To some average 
temperature of  the surrounding gas, and this may be considerably higher than room tempera- 
ture. Furthermore the analyses are usually applied to crystals that solidify at relatively low 
temperature, such as germanium (Tin = 1210 K). Very often, however, these conditions are not 
met. Silicon crystals that are pulled by the floating-zone technique are usually surrounded by 
argon, so that there is no radiative exchange between the gas and the crystal. The temperatures 
too are much higher, so that linearization is out of  the question. In the second class of methods 
finite differences are used [2,6]. Although these methods are rather time-consuming, there is no 
objection to the inclusion of non-linearities. It is therefore possible to arrive at a solution that 
more closely approximates to reality. A difference between the analytical and the numerical 
papers is that the latter seldom give many details of the method employed. They concentrate 
on the presentation of graphical and tabulated results, but it is not always obvious to a 
prospective user how he should proceed to get results that apply to his particular situation. The 
analytical papers, on the other hand sometimes lead to concise and useful results that apply to 
restricted parts of  the temperature field [4]. 

It will therefore be desirable to have analytical solutions for the non-linear cases. The way to 
set about this is to introduce dimensionless variables: 

T= T/Tm, r=7/R, x =£/R. (1.6) 
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The problem is then restated as 

1 a ( T A T )  a ( 1  O..~_._x/ ~T 
r ~r -~r +-ffx - C-~x =0'  (1.7) 

T = 1 at x =x0 (r), (1.8) 

T ~  To if x ~ oo, (1.9) 

aT  
a--7- = 0 at r = 0, (1.10) 

a T  
a--r = - e  T ( T  4 -  To 4) at r=  1 (I.11) 

and is seen to feature a number of dimensionless parameters or functions 

o Or Tm 3 R pCp vR To Xo 
e= km ; c= km , T o = - ~ m , X O -  R (1.12) 

For a typical situation considered in [3] these parameters have the values e=0.0967 
c =  0.01-0.1,  To =3/17,  Ixo 1<0.2, so that they can all be considered to be small. It is 
especially the smallness of e that will enable us to deal effectively with the non-linearity of the 
problem. The influence of the other parameters does not seem to be very profound. Inter- 
preting the meaning of the parameter e, we see that it is a ratio of  external and internal heat 
transfer, which means that it is a kind of Nusselt number. If it is small, the heat resistance of 
the crystal material is obviously relatively low. 

The purpose of this paper is to investigate a method by which analytical solutions can be 
found for systems of the type (1.7) - (1.11), when e is small. This method will be applied to the 
crystal growth problem as it has been described above, but the solution will be published 
elsewhere [3] together with experimental data in support of it. However, since the method may 
find application in other fields, e.g. the cooling of fins [ 11 ], it seems justified to present details 
of it here. We shall first study the solution of a very simple linear model problem. This will 
show that problems of this type may be solved by means of matched asymptotic expan- 
sions [7]. By analogy we shall apply this technique to f'md the solution of a related non-linear 
problem. 

2. A model problem 

As a model problem we choose Laplace's equation 

a 2 T a 2 T 
ax--- q -  + ~ = 0 (2.1) 

subject to the boundary conditions 
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x = O :  T = I ;  x --* oo: T -+0 ,  

aT  aT  
y = 0 :  xzT. = 0 ;  y = l :  - - e T .  ay oy (2.2) 

It is a simple problem that bears a close resemblance to the original one. The solution can be 
found in a variety of  ways, e.g. by  separation of  variables. We find 

T = ~ 4 sin e m 
e -crux  cos Cmy,  (2.3) 

m=o 2c m + sin 2Cm 

where the constants c m are the positive roots o f  

c tan c = e. (2.4) 

Since e < <  1, the roots may be expanded in the following manner 

Co = e  k -  1/6e ~ + O ( e ~ ) ,  

C 
C m = m * r + - -  + O ( e 2 ) ,  m = 1 , 2 , 3  .... 

mTr 

(2.5) 

(2.6) 

These expansions show that, as far as the x-dependence of  the solution is concerned, there is a 
part that varies slowly according to the variable 

= x e  ~. (2.7) 

Indeed, the first term of  the expansion (2.3) may be written 

l e 
f (~ ,y)  = 1 + -~ 1 {  ( ' + O ( e  2) cos y e  ~ 1 -  -~ + O(e2))}e 

C 
-~ { 1 - ~  + O ( e ' ) }  

(: , ,) ~ e -~  + e e -~  + -~ ~ - ~ y  + O(e2). (2.8) 

Strictly speaking, the expansion (2.8) is valid on a Finite G-interval only. To extend the validity 
to an inf'mite interval we must define a strained coordinate ~ = XCo that involves the higher- 
order terms of  the expression (2.5) for co. This reFmed approach will not be pursued here. 
The remaining part of  (2.3) can be expanded for e < <  1 as well. The result is 

2 -  ( - 1 )  m 
~(x,y)=e-~-fmz=l m2 e-mnX cosmrry +o(e2). (2.9) 

Using the terminology of  ref. [7], we may call (2.8) the outer solution of  the problem defined 
by (2.1) and (2.2), i.e. 7~= Touter. Within the same framework the complete solution may be 

written 
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T= Touter + T i n n e r  -- CP, (2.10) 

where CP is the part common to the two expansions. In the present problem this common part 
can be obtained by writing T o u t e r ,  i.e. Eq. (2.8), in the inner variable and expanding for 
e < <  1. This leads to: 

C P = l - e ~ x + e  ( 1  + l x 2 - 1 y 2 ) + 0  (el). 

Since the complete solution is also equal to 7 ~ + T, the inner expansion obviously is 

(2.11) 

{ 1  2___5_m~ = ( -1 )  m e_mnXcosm~ry } , V  

3 

+ O(e~). (2.12) 

It is well known that the expansions (2.8) and (2.12) can be obtained directly from the 
differential equation by application of matched asymptotic expansions [7]. This means that we 
do not depend on the availability of an analytical solution such as (2.3). To derive the outer 
expansion we merely have to recast the problem in terms of the outer variable ~ which replaces 
x. The terms of the expansions are matched. We shall not carry out this process for the simple 
model problem. However, we are led to apply this technique in the next section to solve a 
related non-linear problem that does not admit of an explicit analytical solution. 

3. 'The cylindrical rod 

We consider the heat flow in a semi-infinite rod with a circular cross-section which is cooled by 
radiation. The leading edge of the cylinder is kept at a uniform temperature. Since the singular 
behaviour of the problem is caused by the radiation boundary condition and since our aim is to 
illustrate the applicability of the method of matched asymptotic expansions, we shall carry out 
the analysis for a uniform thermal conductivity. Upon introduction of dimensionless variables 
the problem is governed by the differential equation 

1 a (r a T )  a2T 
Tar +-ffr  (3.1) 

and the boundary conditions are 

x = 0 :  T = I ;  x ~ :  T ~ 0 ,  

aT aT 
r = 0: --~---r = 0; r = I: ar - -eT4 ( e < <  1). 

(3.2) 
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Using the variable ~ defined by  (2.7) and introducing the outer temperature 

7(~, r) = T(x, r), 

we can reformulate the problem as 

1 a ( r a t )  a27 r ar ~ +ca-- ~ - = 0 .  (3.3) 

The boundary conditions are given by (3.2), where x should be replaced by ~. The following 
asymptotic expansion is used as a possible solution: 

7 = T0 (~, r) + e T1 (~, r) + e 2 72 (~, r) + . . . .  (3.4) 

Substitution of  (3.4) in the differential equation (3.3) yields 

1 0 [ OTo'~ 1 0 (r a7i_~ 027i_1 
(i = 1,2,3 . . . .  ). (3.5) 

Expanding the boundary condition at r = 1 we obtain 

ar = 0; a-7 - T°4; Or - - 4  To a 7~ etc. for r = 1. (3.6) 

The remaining boundary conditions give obvious conditions for the perturbation functions/~i- 
It follows immediately that 70 is independent of  r, i.e. 7~o = Ao(~). For 71 we then find 

from (3.5) the general solution 

t l  =A, (0  - ¼ Ao (Or 2, (3.7) 

which, upon substitution in (3.6), yields a differential equation for Ao 

A o = 2 A~. (3.8) 

A prime stands for differentiation with respect to the argument. The solution to (3.8) is subject 

to the boundary conditions A0(0) = 1 and A0(~)  = 0 so that the solution is 

2 3 
Ao =(1  + a t ) - ~ ;  a = - - r .  (3.9) 

5 ~ 

Up to this stage in the expansion we have been able to use the boundary condition at ~ = 0. The 
next perturbation,/~1,  however fails to satisfy this condition. Indeed, from (3.7) we find that 

this boundary condition not only requires A l (0) to be zero but  also Ao'(0 ) = 0. From (3.9) we 
see that tb :° last condition cannot be met.  Therefore, Eq. (3.4) is an outer expansion that is 

JournalofEn 'eeringMath., Vol. 13 (1979) 97-106 



Cooling o flow-heat-resistance cylinders 103 

valid in a region away from ~ = 0. Since at this stage we do not know what conditions to apply 
at ~ = 0, the outer expansion will contain a set of undetermined constants. It is only after we 
have set up an inner expansion valid for values o fx  that are of order unity, i.e. for ~ < <  1, that 
we may employ a matching procedure to assign definite values to these constants. 

The next few terms in the outer expansion can be obtained without undue difficulty. The 
general solution for T2 is seen to be 

atl '(~) r2 + 1 iv 
T2 =A2(~) 4 ~ -  A° (~)r4" (3.10) 

Application of the boundary condition (3.6) then yields a differential equation for A a : 

,, 2 
Aa - 8(1 + a~) - 2  Aa = -~ (1 + a ~ ) - ~  (3.11) 

Demanding that A a should tend to zero if ~ ~ ~ we obtain the solution 

+ a~)--] 1 
Aa =c1(1 " ~  + (1 + a/j) --~ , (3.12) 

where ca is the first of the undetermined constants. 
By now it has become clear how this procedure should be continued, and we shall conclude 

this part of the analysis by presenting the expression for A2, which features another undeter- 
mined constant 

s 5 8 1 c a ( l + a ~ )  " 119 (1+a~)-~ . (3 .13)  A: =c2(1 + a~)-~ + -~ c12(1 +a~) -~ + g - 3 + 4---~-0 

We now have to tackle the problem that the outer expansion (3.4) does not satisfy the 
boundary condition at ~ = 0. In order to get some idea of how to proceed, we shall substitute 

= x e  ~ in the outer expansion and then expand for small values ofe.  The result is 

(x ?--T+ca -~) 2 t 2 
T ~ I - - ~  axe ~ + e + 

(_  5 1 )  { 2 2 4 1 1 4  
- - ~ x  + ~ r  

(4c (2 1 +413@0} 

+ o(e~). (3.14) 

This suggests that we should introduce the inner expansion 

"T='To(x,r) + e ~ "TI + e'T2 + e ¼ "T3 + .... (3.15) 
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Each term of this expansion must tend to the corresponding term of (3.14) if x tends to 
infinity. Indeed, Eq. (3.14) is the part common to both the inner and the outer expansions. 
Each of the functions Ti satisfies the differential equation (3.1). At x = 0 we have Ti = 0 with 
the exception of To (0,r) = 1. The boundary condition at r = 1 must be expanded as well, i.e. at 
r = 1 w e  have  

aTo aT1 aT2 _ ~ 4 ;  0T~a - 4 T ~ 1  etc. (3.16) 
ar - 0 ;  a -7- -=0;  ~ - Or - 

It is not difficult to see that the solutions for To and ~1 simply are 

--. 2 
To = 1 a n d  T l  = - -~ ax. ( 3 . 1 7 )  

For T2 we have the system 

~72T2 = 0,  

-~ 1 T2 (0,r) = 0; T 2 - ~ x 2 - 1 r 2 + c l  + - ~  

(x,0)= 0; 
ar - - ~  (x, 1 ) = - l .  

Or 

if x ~ o o ,  

(3.18) 
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The constant ci can now be determined. Integrating the Laplace equation from r = 0 to r = 1 
and using the boundary conditions we obtain 

dx 2 r T2dr= 1, 

from which, using the fact that T~ (0, r) = 0, we may derive 

fo ~ 1 2  r "T2 dr = ~ x  + constant, x. (3.19) 

Substituting the asymptotic result for ~2 in (3.19) we find that 

5 
c l -  24" (3.20) 

It is now a simple matter to solve the system (3.18). For example, application of the Fourier 
transform yields the solution 

/r ..... y2  atl (y )  
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It will now be obvious how to proceed to find the next few terms in the inner expansion. We 
shall refrain from giving a detailed derivation, but simply state the results 

(8x2 4r2 11) -¢ + ; (3.22) 

22 4 6 2 L--q x -- x2r 2 + + 

  4,0 ,48 1) ))  
27t f o  \ \ y a ~ ( y )  + 5 Y'IIO'------) '°(rY)- -5--Y- + _4___~r2 y -a  sinxydy. 

(3.23) 

A uniformly valid solution to the problem (3.1)-3.2), which is called the composite expansion, 
is obtained by adding the expansions (3.4) and (3.15) and subtracting the common part (3.14). 
To be able to get an accuracy of  O(e 2) it will be necessary to know the value of the constant 
c2. This turns out to be 

575 
c2 - -- 6912 " (3.24) 

4. Concluding remarks 

In problems of the present kind the main term of the composite expansion is precisely the 
leading term of the outer expansion. In the previous section this term was given by Eq. (3.9). 
Interpreting the heat-transfer problem we see that this solution is obtained by balancing axial 
conduction and radiation heat transfer, assuming a uniform temperature distribution in the 
radial direction. In the literature this term has already been derived by Billig [8] who used 
exactly the same physical argument when considering the cooling of a cylindrical germanium 
ingot. His analysis was done for a thermal conductivity k that was inversely proportional to the 
absolute temperature. However, while this author used a temperature-dependent k, he mis- 
takenly kept it constant when differentiating the axial heat flux. Since the result is of interest 
in the field of crystal growth, we shall present the correct result here and extend the validity of 
Billig's work to a cylinder of finite length x l .  

Using the system (1.7)-(1.11) with c = 0, xo = 0 and To = 0, replacing x -* o~ by x = x 1, the 
first term of the outer expansion will be governed by the equation 

5g = 2r° ' ,  

where ~ is again given by ~ = x e-~. The boundary conditions are 

(4.1) 

dfo 
=0:  7~0=1; ~=/~1: d~ -0 "  (4.2) 
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The second condit ion o f  (4.2) follows by  expanding the radiation condit ion at the far end of  

the cylinder. This system admits of  an analytical solution which is 

I os {2t~(~l-~)} ' (4.3) 

where t~ follows from the equation 

(0 t ~ = c o s ( 2 t ~ l ) ,  <2ot~1 < "-} . (4.4) 

For  ~l ~ ~ the solution assumes the simple form 7~o = (1 + 25) -1/2 

Although we have restricted our at tent ion in this paper to the non-linearity caused by  

radiation, "it will be clear that  the method o f  matched asymptotic  expansions will prove useful 

in more general cases. For  example,  we could extend the problem to include the effect of  

outside convection, bo th  free and forced. However, if  this is properly done the problem will 

become a conjugate one, i.e. the flow of  heal  both  inside the crystal and in the-surrounding 

moving gas will have to  be considered. The problem of  outside heat transfer alone is already 

rather complicated,  even if  at tention is restricted to low-heat-resistance sheets or cylinders [9, 10]. 

It will therefore be rather challenging to devise a method that  uses sophisticated heat-transfer 

models bo th  inside and outside the cooling cylinder. 
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